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Closed-form analytical jump conditions across normal shock waves in pure 
vapour-droplet flows have been derived for different boundary conditions. They are 
equally applicable to partly and fully dispersed shock waves. Collectively they may 
be called the generalized Rankine-Hugoniot relations for wet vapour. A phase 
diagram is constructed which specifies the type of shock structure obtained in 
vapour-droplet flow given some overall parameters. It is shown that in addition to 
the partly and fully dispersed shock waves that are possible in any relaxing medium, 
there also exists a class of shock waves in wet vapour in which the two-phase relaxing 
medium reverts to a single-phase non-relaxing one. An analytical expression for the 
limiting upstream wetness fraction below which complete evaporation will take place 
inside a shock of specified strength has been deduced. A new theory has been 
formulated which shows that, depending on the upstream wetness fraction, a 
continuous transition exists for the shock velocity between its frozen and fully 
equilibrium values. The mechanisms of entropy production inside a shock are also 
discussed. 

1. Introduction 
A pure vapour-droplet mixture is a relaxing medium and accordingly exhibits the 

property of frequency dispersion, i.e. the speed of an harmonic sound wave through 
the medium is a function of the frequency itself. If the frequency is very high, the 
sound wave travels through the medium such that all relaxation processes arising out 
of non-equilibrium mass, momentum and energy transfer between the two phases 
remain essentially frozen. The medium behaves like a single-phase vapour and the 
speed of sound in these situations is termed the frozen speed, a,. On the other hand, 
if the frequency of the harmonic sound wave is low, full equilibrium between the 
vapour and the liquid droplets is maintained always and the wave travels with the 
equilibrium speed of sound, a,. The frozen speed is higher than the equilibrium speed 
and, depending on the frequency, the speed of an harmonic sound wave would vary 
between these two limits (Becker 1970). 

Because of the dispersion in sound speed, two limiting Mach numbers can be 
defined corresponding to a particular flow velocity V :  (i) a frozen Mach number 
Atf = V/af, and (ii) an equilibrium Mach number Me = V/ue .  In general Me > Mf. As 
a result of this, two distinct types of steady shock waves might occur in such a 
medium, namely a partly dispersed shock where an almost discontinuous wave front 
(similar to the normal shock wave obtained in a perfect gas) is followed by a long 
relaxation zone, or a fully dispersed one where flow properties change continuously 
from one equilibrium state to another. Study of such shock waves is important as 
they almost invariably occur in the last few stages of low-pressure steam turbines 
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used for electrical power generation where the flow is transonic with maximum Mach 
numbers about 2. With growing evidence that a significant amount of ‘wetness loss ’ 
in turbines operating with wet steam is aerodynamic in origin (and hence controllable 
by improved design), as opposed to the traditional view of being thermodynamic in 
nature, it is instructive to study syst’ematically the characteristics of shock waves in 
isolation before considering their interaction with the aerodynamics of the blade- 
passage as a whole. (An example of such interaction in convergent-divergent nozzles 
resulting in oscillating shock waves may be found in Guha & Young 1991.) 

The internal structures of fully dispersed and partly dispersed shock waves in pure 
vapour-droplet flows have been thoroughly discussed by Young & Guha (1991) and 
Guha (1992) respectively. The development of such shock waves under unsteady 
situations has been studied by Guha & Young (1989) by analysing the conventional 
piston-and-cylinder problem in wet vapour. A lucid overview of the complex physics 
governing shock wave phenomena in vapour-droplet flow may be found in Guha 
(1991). There are also many references on the structure of other types of dispersed 
shock waves. For example, Johannesen et al. ( 1962) discussed vibrational relaxation 
regions in carbon dioxide, Nayfeh (1966) analysed shock structure in a gas containing 
ablating particles and Rudinger (1964) discussed the same for gas flows carrying 
small solid particles. The general behaviour of condensing flows was examined by 
Marble (1969) who discussed the structure of partly dispersed waves, and many non- 
equilibrium aspects of two-phase, wet steam flow were described by Jackson & 
Davidson (1983). Measurements of shock propagation in a shock tube have also been 
performed by Goossens et al. (1988) in moist air and by Roth & Fischer (1985) in 
aerosol droplet evaporation in argon. 

This paper concentrates on the relations connecting the end state points of a 
normal shock wave in pure vapour-droplet mixtures with special reference to wet 
steam as a particular example. To the best of the author’s knowledge, such relations 
have not been derived before. They may be regarded as the two-phase vapour- 
droplet-flow counterparts of the Rankine-Hugoniot relations for a perfect gas as 
discussed in classical gasdynamics. They are equally applicable to partly dispersed 
or fully dispersed shock waves and although the numerical calculations have been 
performed here specifically for wet steam, the formulae derived and the conclusions 
deduced are also valid for other pure vapouraroplet mixtures. 

2. Governing equations 
The vapour-droplet two-phase medium is considered to be a homogeneous 

mixture of the continuous vapour phase, a t  pressure p and temperature q, and 
minute droplets of various sizes. The mixture is assumed to be pure which means that 
the vapour and liquid phases are of same chemical species. If the volume of the liquid 
phase is neglected (which is an assumption that restricts the analysis to flows with 
low wetness fraction, the case of practical importance), the mixture density p is 
related to the vapour density p g  via the wetness fraction y and is given by 

P = P g N  -Y)- (1) 

P = pgRTg, (2) 

The vapour phase is assumed to behave as a perfect gas with constant specific heat 
capacities. Thus 

where R is the specific gas constant. For greater accuracy, more realistic equations 
of state can be introduced, but these complicate the development and do not provide 
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further physical insight. Equation (2) implies that the partial pressure due to the 
liquid droplets is negligible. The thermodynamic equilibrium state is usually 
specified by the saturation temperature T, rather than the pressure. The two are 
related by the Clausius-Clapeyron equation which, for low pressure, is 

(dT,/T,) = (RT,/hf,) (dP/P), (3) 

where h,, is the specific enthalpy of evaporation and is a known function of 
temperature. The mixture enthalpy h is the sum of the contributions from each phase 
and is given by 

The subscripts g and 1, in this paper, refer to the vapour and liquid phase 
respectively. 

We now consider the structure of stationary, finite-amplitude waves in one- 
dimensional steady flow. Far upstream of the wave the flow is assumed to be in 
thermodynamic and inertial equilibrium with a specified pressure and wetness 
fraction. Far downstream of the wave a new equilibrium condition is re-established. 
The continuity, momentum and energy equations for the two-phase mixture 
connecting the two end equilibrium states across a normal shock wave take the form : 

h =  ( l - y ) h , + y h , =  h,-yhf,. (4) 

continuity P I &  = P2672; ( 5 )  
momentum P,+Pl v: = P,+P2% (6 )  
energy cPT,l-Ylhfgl+iv: = CpTs2-Y2hIg2+3% (7) 

where c p  is the isobaric specific heat capacity of the vapour phase, V is the common 
velocity of both phases, p is the mixture density and the subscripts 1 and 2 refer to 
far upstream and far downstream conditions respectively. (The change in enthalpy 
in the energy equation is obtained from (4).) Note that neither the number of 
droplets nor their sizes appear in the overall conservation equations. Although they 
determine the different relaxation timescales and hence, in turn, the thickness of the 
shock wave, overall changes across the shock wave depend only on the total quantity 
of the liquid phase present (namely the wetness fraction) and not on its distribution. 

Given the upstream condition, the six equations (1)-(3)  and (5)-(7)  completely 
specify the downstream state of the shock wave. However, no general analytical 
solution is possible in this case and the equations have to be solved by an iterative 
numerical scheme. For moderate strengths of shock waves, it is, however, possible to 
obtain an approximate analytical solution and this has been derived below. Later it 
is also shown that if instead of specifying the upstream velocity V,, the pressure ratio 
p , / p ,  across the shock is prescribed a completely general analytical solution of (1)-(7)  
can be formulated. 

3. Approximate RankineHugonio t relations for vapour-droplet mixtures 
The ratio of the different flow variables between the two end states of a normal 

shock wave in an ideal gas can be expressed as functions of the upstream Mach 
number. They are generally referred to as the Rankine-Hugoniot relations. In the 
case of a simpler relaxing medium (e.g. solid-particle-laden gas), it can be shown that 
these relations remain identical (Rudinger 1964) if the upstream equilibrium Mach 
number (Mel) is used instead of the frozen Mach number (Mfl ) .  Derivation of such 
relations for the case of a shock wave in vapour-droplet mixtures is not 
straightforward. Difficulties arise mainly because of the mass transfer between the 
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FIGURE 1. Variation of ye with wetness fraction y and pressure p .  

two phases and also because the pressure and temperature of the vapour-droplet 
mixture at equilibrium are not independent of each other but are connected via the 
Clausius-Clapeyron equation. 

For deriving the approximate RankineHugoniot relations for weak shock waves 
where the entropy change is small, we can write the thermodynamic relation for the 
two-phase mixture as 

which, after substituting the value of dh from (4), becomes 

dh = dp/p, (8) 

(1-?WT,-hh,,dy = dp/p, (9) 

where c = C,+YC,/(l--YY) (10) 

and c, is the specific heat capacity of the liquid phase. 
With the help of the equation of state, (2), and the Clausius-Clapeyron equation, 

(3), it may be shown, after considerable algebraic manipulation, that  (9) amounts to  

Y dh = dp/p = z d ( p / p ) ,  
Y e - 1  

where the equilibrium isentropic exponent of the mixture ye is given by 

The value of ye is, in general, less than y, the isentropic exponent for the vapour 
phase alone. For low-pressure steam, y - 1.32 and ye - 1.12. 

Equation (12) shows that ye would change slowly with pressure (through 
saturation temperature T,) and the wetness fraction (through the mixture specific 
heat c). Such dependence of ye  on pressure and wetness fraction has been plotted in 
figure 1 which shows that unless the change of state is substantial, ye can be 
approximately treated as a constant. 



353 

If (11)  is integrated between state points 1 and 2, and expanded using (4), 
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assuming ye remains constant, then one obtains 

cp( %a - T,i) - (ye hfgz - ~1 hegi 1 = ( Y e /  (Ye - 1 1 ) (pa/pa -PJpi  1. (13) 
Substitution of (13) in the energy equation (7) results in 

Equation (14) is analogous to the energy equation for the adiabatic flow of a single- 
phase ideal gas. However, in the case of ideal gas, dh = c p  dT = y / ( y  - 1) d(p/p) is a 
general identity and hence the analogue of (14) is generally valid for any arbitrary 
adiabatic process in an ideal gas. This may not be the case for two-phase 
vapour-droplet flow. However, although (14) was derived for an isentropic process, 
it applies reasonably well across shock waves of low to moderate strength. (This will 
become evident when calculations based on approximate Rankine-Hugoniot 
relations are later compared with an exact solution.) One of the conditions, as 
discussed in 95, for using (14) is that complete evaporation does not occur and this 
restricts the upper limit of the upstream Mach number to rather low values. 

Once the energy equation, (7), has been replaced by (14), the resulting set of 
equations ( ( 5 ) ,  (6) and (14)) are identical with the ideal gas analogues, and the 
Rankine-Hugoniot relations may be derived following the standard procedure given 
in any gasdynamics textbook. The results are 

PZIP1 = V,/G (17) 

where the upstream equilibrium Mach number (MJ1 is given by 

where is the upstream equilibrium speed of sound. (In this paper we use a 
simpler notation ue for fully equilibrium speed of sound, since other intermediate 
speeds of sound are not important here. Thus a, here corresponds to a,,, for example, 
in Young & Guha 1991.) The subscripts 1 and 2, as before, refer to the far upstream 
and far downstream conditions respectively, and p is the mixture density. 

The temperature ratio across the shock, however, is not given by the perfect gas 
type Rankine-Hugoniot relation, but must be calculated by integrating the 
Clausius-Clapeyron equation, (3). Assuming that the value of RT,/heg does not 
change appreciably across the shock wave (which is in keeping with the earlier 
assumption) of constant ye) ,  the temperature ratio is approximately 

T,,/T,l = @a/Pl)RTs'hcr* (19) 

Ya = 1-Pa/(RPa % a ) *  (20) 

The downstream wetness fraction can then be calculated from (1) and (2): 

The range of acceptability of the above equations depends on the validity of (14). 
(The accuracy of (15)-(18) is compared with an exact solution later in $5.)  However, 
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FIQURE 2. Schematic structure of shock waves in a relaxing medium. (a) Partly dispersed shock 

wave, Me, > 1, M,, > I .  (b) Fully dispersed shock wave, Me, > 1, Mr, < 1. 

although not exact, these equations have two advantages: (i) all shock relations 
could be explicitly written in terms of the upstream parameters only, and (ii) the 
form of the equations is similar to the well-known Rankine-Hugoniot relations for 
ideal gas. 

It should be noted that (15)-(20) are valid for both partly and fully dispersed shock 
waves. Partly dispersed shock waves are characterized by an almost discontinuous 
wave front followed by a relaxation zone and occur when the upstream frozen Mach 
number is greater than unity (Mf1 > 1 ,  which also implies that (Me)l > 1). The overall 
changes across such a shock wave are given by the above equations while the changes 
just across the discontinuous wave front are given by the classical Rankine-Hugoniot 
equation based on M f l .  If M,, < 1 but (Me),  > 1, then a fully dispersed shock wave, 
which does not have a discontinuous wave front, will appear in the flow field. The 
above equations again give the overall changes across such waves. Figure 2 
schematically depicts the point. 

4. A paradox and its solution 
If instead of a steady, partly dispersed shock wave sitting at  a particular position, 

one considers the shock wave to be moving with a constant velocity V ,  (= V,) through 
the vapour-droplet mixture initially at  rest, then it is easy to show that V ,  would be 
given equivalently either by the classical Rankine-Hugoniot relation or the 
Rankine-Hugoniot relations just derived : 

where y is the isentropic exponent of the vapour phase (i.e. ratio of the two specific 
heats) and a,, is the upstream frozen speed of sound, given by 

For a prescribed pressure ratio p , / p , ,  (21)  and (22)  together would specify the 
intermediate pressure p f  achieved just after the frozen shock. The pressure rises 
almost discontinuously (within a few mean free paths) from p ,  to p ,  across the frozen 
shock and undergoes a further rise, in the relaxation zone through which the mixture 
attains equilibrium, to the downstream pressure p, .  If the vapour ahead of the shock 
was completely dry then one would expect from common sense that p ,  should be 

a,, = ( Y P 1 h g d .  (23)  



Jump conditions across normal shock waves 

1.4 i-----t 
355 

0 0.02 0.04 0.06 0.08 0.10 
Y 

FIGURE 3. Variation of a:/a: with wetness fraction ; p = 0.35 bar. 

equal to p ,  and (21) and (22) should become identical in the limit as yl+O, since 
without any droplets present there should not be any relaxation zone behind the 
frozen shock. That they do not become so is apparent from figure 3, which shows that 
the equilibrium sound speed a, calculated from (18) does not coincide with the frozen 
speed a, in the limit y+O, and therefore the shock speed V,  calculated from (21) and 
(22) would be different. Young t Guha (1991) have noted the previous notion of the 
occurrence of such a discontinuity in the speed of sound across the saturation line (as 
if the speed of sound on the saturation line depends on whether it is approached from 
the dry vapour or the wet vapour side) and have given an explanation for its 
apparent existence. Here we concentrate on the anomaly in the case of shock waves 
(in the sense that (22) is not only invalid in the case of yl+0 but also for higher 
values of y1 up to a certain limit) and provide a solution for that problem. 

5. Complete evaporation inside the relaxation zone 
The key point in understanding the paradox is that, while deriving (22), we tacitly 

assumed that the vapour is wet and at equilibrium both upstream and downstream 
of the shock wave.. If the imposed pressure ratio is too high, this may not be the case 
and complete evaporation of the droplets may take place inside the relaxation zone. 
In  such a case, upstream of the shock wave the fluid is an equilibrium two-phase 
mixture whereas downstream of the shock it is single-phase vapour alone. (This 
problem does not arise in solid-particle-laden gas.) The downstream vapour-phase 
temperature is no longer the saturation temperature corresponding to the prevailing 
pressure and (22) is no longer valid. 

In  order to calculate the shock velocity when complete evaporation takes place, 
one has to write the basic conservation equations across the shock and solve them 
directly. Since the downstream wetness fraction y2 is zero, it  can be dropped from the 
equations : 
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If the initial pressure p , ,  initial wetness fraction y, and the pressure ratio p , /p l  are 
given then T,, and pgl become specified automatically by the Clausius-Clapeyron 
equation, (3), and the equation of state, (2), respectively. Equations (24), (25) and 
(26) can then be solved simultaneously for the three unknowns V,, T,  and V,. It is to 
be noted that, since downstream of the shock the vapour is no longer wet, T,  is not 
equal to q,. In this case it is possible to obtain an analytical solution (after algebraic 
manipulation) for the downstream temperature T, and the shock velocity V,, given 
by 

%)Y, hfg1 ; P2-PIY-1  
T, = q1(1+P*%)-( P p12y 9 (27 1 

Once T,  and V, are found, V, can be calculated from (24). 
It can be seen from (27) that for constant p ,  and for a fixed pressure ratio p 2 / p l ,  

the downstream temperature T, decreases linearly with yl. Equation (28) then shows 
that the shock velocity (V ,  = V,) also decreases with increasing upstream wetness 
fraction y,. Figures 4 and 5 show the variation of downstream temperature and shock 
velocity respectively as a function of yl, as predicted by (27) and (28), for p ,  = 0.35 
bar andp,/pl = 3.0 (with corresponding T,, = 347.9 K, y = 1.32 and ye = 1.1274). It 
is clear that if y, is set equal to zero in (27) and (28), the Rankine-Hugoniot relations 
for single-phase vapour are regained. 

According to figures 4 and 5, as upstream wetness fraction y1 is increased, keeping 
the pressure ratio fixed, both the downstream temperature and shock velocity 
decrease. They would continue to do so until the vapour downstream becomes 
just wet, i.e. vapour temperature just equals the saturation value corresponding to 
p, .  The limiting value of y, for the particular pressure ratio chosen (p2/pl = 3), is 
Y,,,~,,, x 0.065. If y1 is increased further, T, is no longer independent of p ,  (T, = q,) 
and (24)-(28) are no longer valid. y, must now be treated as a new variable and the 
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original equations for an equilibrium shock (( 1)-(7)) must be solved. For a prescribed 
pressure ratio (rather than specifying the upstream velocity V,) an accurate closed- 
form analytical solution of the equations is possible (without introducing the 
approximate energy equation (14)) and is given by 

J? = ((Pz-PJ/PJ (1 -  (P l (~ -Y2)~~e) /Pz ) - ' .  (30) 

All the quantities on the right-hand side of (29) being known, ye may be evaluated 
and then the upstream velocity V, may be calculated from (30). One can now assess 
the accuracy of the approximate equations (15)-(20) by comparing them with (29) 
and (30). (Equations (29) and (30) have to be solved iteratively for prescribed V,.) 
Figure 6 shows such a comparison. The velocity or pressure calculated from the two 
sets of equations are virtually indistinguishable on the scale of the graph and hence 
only the net evaporation is plotted. It can be seen that the approximate equations 
work reasonably well until the strength of the shock is such that the mixture is close 
to complete evaporation. 

Thus if y1 = 0, the velocity of the shock is given by the frozen-shock relation, (21), 
with p, replaced by p2. If y1 is greater than or equal to the limiting value yl,lim, for 
which downstream of the shock the vapour is wet, the velocity of the shock is given 
by the equilibrium relation, (30). For intermediate values of yl, 0 < y1 < yl,,im, 
complete evaporation takes place inside the dispersed shock and the above theory, 
(28), shows that there is a continuous transition in the shock velocity from the frozen 
to the equilibrium value. Thus (28) becomes identical with the frozen-shock relation 
(21) in the limit y1 = 0, and becomes identical with the equilibrium shock relation 
(30) in the limit y1 = yl,lim. The discontinuity in the slope of the shock velocity at 
y1 = yl,lim (figure 5 )  is caused by the discontinuity of slope of various properties 
across the saturation line, for example of an isotherm on the Mollier diagram. 
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6. Limiting wetness fraction 
For different values of the pressure ratio p z / p l ,  the limiting wetness fraction yl,lim, 

below which complete evaporation takes place, is different. The appropriate limiting 
values can be found either by setting T, = T,, in (27 )  or setting yz = 0 in (29), and is 
given by 

1, (31 1 
T , 1 ~ ~ R + 2 c , ) - - T , z ( 2 c , - p ~ ~  PI P2 

Y1,lim = 
RT,l 2h 

Pl f a  

which can be rewritten as 

3 (32) 
( ( P  - 1) + 2y / (y  - 1))  - P" (2y/ (y  - 1) - (P - l)/P) 

2/d+P- 1 Y1,lim X 

where 
predominantly 

depends on the pressure ratio p,/pl and is onlg a slowly varying function of the 
absolute level of upstream pressure p ,  (through H ) .  Equation (31) is plotted in figure 
7 ,  which gives the variation of yl,lim with pressure ratio p,/pl .  The curve denotes 
the boundary line for complete drying. For shock conditions below the curve 
(yl < yl,lim), the downstream vapour is dry, whereas for shock conditions above 
the curve (yl > yl,lim), equilibrium exists both upstream and downstream of the 
shock. 

7. Net evaporation inside a dispersed shock wave 
If the upstream wetness fraction is higher than the limiting value yl,lim for the 

same pressure ratio p z / p l ,  (29) shows that the net evaporation across the wave 
( b y  = y1 -yz) decreases with increasing upstream wetness fraction yl. In figure 8 the 

= pz /p l  and I? = RT,,/h,,,. 
Equation (32 )  shows that this limiting wetness fraction yl, 
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net evaporation has been plotted against pressure ratio across the shock, for three 
different values of yl. On the same graph, the limiting wetness fraction corresponding 
to the same pressure ratios is plotted. All the By BS. p,/pl  curves start from the origin, 
as the net evaporation is necessarily zero for a shock of zero strength. Also they must 
terminate on the limiting wetness fraction curve, as when the upstream wetness 
fraction equals the limiting value complete evaporation takes place. Figure 8 also 
shows that for any prescribed pressure ratio the net evaporation increases as y1 is 
decreased, the maximum evaporation being y1 = yl, lim, 
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The equation of state (2) together with ( 1 )  gives 

(1  - Y z ) / ( i  -Y1) = (PZ/Pl) ( ! C l / ! C Z )  (P l /PZ)?  

in low-pressure steam. 

(33) 

which can be rearranged as 

Ay/(l -  ~ 1 )  = f(Pz/Pl, Y e ) ?  (34) 

since the approximate Rankine-Hugoniot relations show that all the quantities on 
the right-hand side of (33) are functions ofpz/pl and ye. Combining (i) ,  (18), (21), (22) 
and (23), it  is easy to show that 

Equation (35) shows that for moderate pressure ratios (so that the second term on 
the right-hand side of (35) may be removed) the upstream frozen Mach number M,, 
is related to the pressure ratio by 

Figure 8 shows that for moderate pressure ratio p,/p, the function f in (34) is nearly 
linear. Equations (34) and (36) together then suggest that if the net evaporation Ay 
is plotted as a function of the upstream frozen Mach number, then curves for 
different y1 would coincide. Figure 9 shows three such curves for three different 
upstream wetness fractions, calculated iteratively from the conservation equations 
((5)-(7)). It is seen that they are reasonably close for moderate Mfl, the difference 
being higher for too high or too low values ofM,,. When Mfl is high, (14) is not a good 
approximation and so (34) and (36) are not accurate. When M,, is low, the second 
term on the right-hand side of (35) is no longer negligible and hence (36) is again not 
valid. It is to be noted that the net evaporation is not zero when Mfl = 1.0 (as 
opposed to what has been shown in Konorski 1971), as fully dispersed shock waves 
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may exist below that Mach number. The difference between Mpl and (Me),  depends 
on the upstream wetness fraction y1 and thus zero net evaporation occurs at different 
M,, for different values of yl,M,, being lower for higher y,. The limiting value of the 
upstream frozen Mach number below which normal shock waves cannot exist in wet 
vapour may be found by letting the pressure ratio p , / p ,  tend to unity in (35), and 

(37) 
is given by 

*i,rnin = ( Y e / Y )  ( 1 - ~ i ) *  
Equation (37) is valid until y1 is too low. Depending on the strength of the small- 
amplitude wave p2 /p , ,  there would be a small zone of y, (in the vicinity of y1 = 0) 
through which would rise from Y e / ?  to the frozen requirement of unity. 

8. Complete evaporation with or without a discontinuity 
If the upstream frozen Mach number M,, is greater than unity then a discontinuity 

appears in the flow field and a partly dispersed shock structure results. If, on the 
other hand, M,, is less than unity but the equilibrium Mach number (Me)l is greater 
than unity, a fully dispersed shock is obtained. Such an occurrence has been 
indicated in figure 9. However, what happens when complete evaporation takes 
place 1 

To investigate this problem, one can solve the conservation equations (5)-(7) 
iteratively for the upstream wetness fraction y,, the inputs being a specified pressure 
ratio p , / p ,  together with the limiting criterion for no frozen discontinuity in the flow 
field, i.e. M,, = 1. If this calculation shows that the computed value of y1 is less than 
the limiting wetness fraction y,, lirn for the same pressure ratio, then complete 
evaporation would take place and the calculation has to be repeated with the 
conservation equations (24)-(26) instead, the boundary conditions remaining the 
same. The results of such numerical calculations have been plotted in figure 10 as a 
solid line. Any condition towards the left of this line would mean that there is no 
frozen discontinuity in the flow field. On the same figure, the limiting wetness 
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fraction us. the pressure ratio is plotted, as a dotted line. Any condition below this 
line means that complete evaporation has taken place. Evidently the two curves 
divide the diagram into four regions. If the boundary conditions correspond to  
regions I and 11, then equilibrium fully dispersed and equilibrium partly dispersed 
shock waves respectively are obtained. On the other hand region I11 corresponds to  
complete evaporation without any frozen discontinuity and region IV corresponds to 
complete evaporation with a frozen discontinuity present. 

Although the line of no discontinuity, as shown in figure 10, was obtained by 
accurate numerical calculation, an approximately accurate expression representing 
a part of that  line that separates region I from I1 can be obtained by setting 
Mfl = 1.0 in (35). The result is 

There are two points worth mentioning. Firstly, (38) is not valid along the boundary 
between regions I11 and IV. The reason is obvious : the original equation (35) is not 
valid when complete evaporation takes place. Secondly, the tempting linearization 
of (38) in order to express y1 as a linear function of p 2 / p l  (as figure 10 suggests) may 
lead to great inaccuracy in the computed value of yl. As y1 is calculated as the 
difference of two large numbers, a small percentage error in the value of the 
expression within the square bracket would result in a much higher relative error in 

Y1. 

9. Conventional representation of jump conditions 
It is conventional to  represent the ratios of different flow variables between the 

two end states of a normal shock wave in an ideal gas as functions of the upstream 
Mach number. Following a similar convention, figure 11 plots the pressure ratio 
across normal shock waves in vapour-droplet flows as a function of upstream frozen 
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FIGURE 12. Variation of static temperature ratio with upstream frozen Mach number for shock 
waves in low-pressure steam. 

Mach number Mfl. However, the curve is not unique in this case and depends on the 
wetness fraction yl. For the same Mfl, higher y1 leads to a higher pressure ratio. The 
Rankine-Hugoniot relation for dry vapour (ideal gas) has also been plotted in figure 
11 for comparison. The pressure ratio achieved in this case is obviously always 
smaller than wet vapour, as pressure rises in the relaxation zone after the frozen 
shock. As another limiting case, the pressure ratio is plotted as a dotted line for shock 
waves such that the downstream vapour condition is marginally wet (yl = yl,lim). 
Whenever this line crosses other Rankine-Hugoniot plots (the solid lines), complete 
evaporation occurs. The dotted line thus divides each solid line into two segments 
where different sets of equations ((27)-(28) and (29)-(30)) hold and a discontinuity 
in the slope of the segments exists at  the point of intersection. If two-phase 
equilibrium is maintained at both ends of the shock wave, (35) provides a simple but 
slightly approximate relation between upstream frozen Mach number and pressure 
ratio. 

Figure 12 shows the static temperature ratio, again as a function of upstream 
frozen Mach number. For a shock wave where two-phase equilibrium persists at the 
downstream asymptote, the static temperature ratio is simply the ratio of the 
saturation temperatures corresponding to the upstream and downstream pressures. 
When complete evaporation takes place, the downstream temperature is independent 
of the pressure there and is given by (27). The static temperature ratio for the 
limiting case of dry vapour is also plotted on the same diagram. 

The analysis in this paper depends on integral arguments. It relates the far 
upstream condition with the far downstream one, without any reference to what 
happens in between. On the other hand, if one is interested in the shock wave profile, 
one has to solve numerically the relevant differential equations (Guha & Young 
1989). It is interesting to compare the asymptotic values of different variables 
obtained from such calculations, with the Rankine-Hugoniot relations obtained 
from the present integral analysis. Such a comparison demonstrates independent 
theoretical consistency. 
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FIGURE 13. Comparison of asymptotic pressure profiles with generalized Rankine-Hugoniot 
equations : I, partly dispersed with complete evaporation (pl = 0.35 bar, M,, = 1.6, y1 = 0.05, rl = 
0.1 pm); 11, equilibrium partly dispersed (pl = 0.35 bar, M,, = 1.2, y1 = 0.05, rl = 0.1 pm); 111, 
equilibrium fully dispersed (p, = 0.35 bar, M,, = 0.97, y1 = 0.1, rl = 0.1 pm). 

Figure 13 shows three such comparisons, chosen to represent different types of 
shock waves : equilibrium partly dispersed, equilibrium fully dispersed and partly 
dispersed with complete evaporation. The ordinate is normalized by the upstream 
static pressure. There is a discontinuous wave front if the wave is partly dispersed. 
The abscissa is the distance normalized by 7TV, where V is the upstream velocity in 
the case of a fully dispersed wave or the velocity just after the frozen shock in the 
case of partly dispersed wave, and T~ is the thermal relaxation time as defined in 
Guha & Young (1989). To obtain the wave profile one has to specify the radius of the 
droplets as well, which is taken to be 0.1 pm in all the examples. The origin on the 
abscissa corresponds to the position of the frozen shock for a partly dispersed wave 
and to an arbitrarily small perturbation for a fully dispersed wave. The dotted lines 
in the figure represent the Rankine-Hugoniot calculations. In  the case of complete 
evaporation, (27) and (28) were used for this purpose. For the remaining two cases, 
final downstream pressures were calculated both by (15) and by (29) and (30) which 
give almost the same answer. It is noted that for all three cases the asymptotic values 
of the downstream pressure obtained by solving the differential equations agree well 
with the generalized Rankine-Hugoniot calculations. 

10. Entropy rise through the shock wave 

entropy rise through the shock is simply 
If the vapour is always dry, both upstream and downstream of the shock, then the 

( % - % ) / C t J  = ln (PZ/Pl) (P,/Pz)y, (39) 

where 
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low-pressure steam. 

If the vapour is wet equilibrium both upstream and downstream of the shock, then 
the entropy rise can be calculated directly from 

82-81 = ~ ~ ~ - ~ 2 ~ ~ , 2 + ~ 2 ~ , 2 1 - ~ ~ ~ - ~ 1 ~ ~ , 1 + Y 1 ~ 1 ~ 1 ,  (41) 
where the entropies sg2 and 812 can be easily calculated once the downstream state has 
been determined from the jump conditions derived previously. In a partly dispersed 
shock wave there are two sources of entropy production : (i) that due to viscosity and 
thermal conductivity as in a normal shock wave in an ideal gas, and (ii) that due to 
different interphase transfer processes occurring in the relaxation zone following the 
frozen shock. (The liquid droplets pass through the frozen shock without any change 
of radius, temperature and velocity, and hence the two-phase mixture jyst after the 
frozen shock is out of equilibrium.) In  a fully dispersed wave, the relaxation processes 
are solely responsible for the creation of entropy. In  such waves, non-equilibrium 
variables such as velocity slip and vapour superheat grow to a maximum and then 
decrease continuously so that the downstream equilibrium state is reached. 

It should be noted that in a normal shock wave in an ideal gas, although viscosity 
and thermal conductivity are responsible for the entropy production, they do not 
determine the total entropy rise across the shock wave. The total entropy rise is fixed 
by the integral conservation equations. Viscosity and thermal conductivity only 
determine the extent of the transition layer (normally a few mean free paths) 
through which such rise in entropy, fixed by Rankine-Hugoniot relations, would 
take place. Similarly, the total entropy rise through the relaxation zone in a 
dispersed shock wave is fixed by the conservation equations. Different relaxation 
times characterizing the relaxation processes would determine the distribution of 
such loss and hence the thickness of the dispersed shock wave (see the Appendix for 
further details). 

The entropy rise for the different cases has been plotted in figure 14. As expected, 
for the same frozen Mach number, the entropy rise in the wet vapour is greater than 
that in the dry vapour owing to the presence of different non-equilibrium effects. For 
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example, for an upstream frozen Mach number of 1.7,  the entropy rise in wet steam 
(with y1 = 0.1) is more than double that in the dry vapour. 

11. Conclusion 
The approximate Rankine-Hugoniot relations (( 15)-(20)) for a normal shock wave 

in wet vapour have been derived. (Like the conventional case, all the upstream 
conditions are assumed to be known, whereas downstream conditions are to be 
predicted.) For moderate pressure ratios, these relations can predict the downstream 
conditions with reasonable accuracy. The equations are valid for both partly and 
fully dispersed waves. However, they are not valid if complete evaporation occurs 
inside the dispersed shock wave. (Note that in the case of solid-particle-laden gas, 
similar equations with suitable y are exact and hold unconditionally.) 

If, instead of the upstream velocity, the pressure ratio across the shock is treated 
as an independent variable, then an exact closed-form analytical solution ((29) and 
(30)) of the conservation equations is possible (without requiring any approximate 
energy equation, e.g. (14)). This solution applies to partly and fully dispersed waves 
when the fluid remains an equilibrium two-phase mixture at  both the upstream and 
downstream ends of the shock wave. However, if complete evaporation takes place 
inside the dispersed shock wave, the conservation ‘e,quations yield a different set of 
jump conditions across the shock ((27) and (28)). 

For a prescribed pressure ratio across the shock, an expression for the limiting 
upstream wetness fraction yl,lim, (31), has been formulated. If the actual upstream 
wetness fraction is less than this limiting value, complete evaporation takes place 
inside the dispersed shock. The analytical theory developed here (equation (28)) 
shows that, depending on the upstream wetness fraction, the shock velocity 
continuously varies from the frozen (equation (21)) to the equilibrium value ((22) or 
(30)). Equation (37) specifies the minimum frozen Mach number below which steady 
normal shock waves do not exist in vapour-droplet flow. 

This study also shows that in addition to the usual types of partly and fully 
dispersed shock waves that exist in any general relaxation medium, there also exists 
a class of shock waves in wet vapour in which the two-phase relaxing medium reverts 
to a single-phase non-relaxing one. Depending on the pressure ratio attained and 
upstream wetness fraction, such shock waves may or may not involve a frozen 
discontinuity (figure 10). This peculiarity is a consequence of phase change in 
vapour-droplet mixtures. 

The author is grateful to Dr J. B. Young for his helpful comments on the 
manuscript, and to Gonville & Caius College, Cambridge for awarding him a 
Research Fellowship. 

Appendix. On the entropy production inside a shock wave 
As a prelude to understanding how the integral equations can predict the entropy 

production inside a dispersed shock wave in vapour-droplet flow, we start with the 
one-dimensional Euler equations of motion for an ideal gas: 

continuity d(pVA) = 0, 

momentum d A ( p + p V ) - p d A  = 0, 
energy d(c, T+$P) = 0, 
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where A is the flow area. The above equations can be combined together to show 
ds = 0 ; thus the process is isentropic. In fact the momentum and energy equations 
become equivalent in this case and one of them may be abandoned. However, if these 
equations are integrated between points 1 and 2, assuming the area remains 
constant, one obtains the shock relations : 

continuity 

momentum P l + P l E  = P,+P2% 

P1 v, = P2 v,, 

energy cpq+!jC = c p T 2 + ! j E .  

The momentum and energy equations in the integrated form are no longer identical 
(except in the trivial case when all upstream conditions are same as downstream 
ones) and these apparently 'inviscid ' equations predict a fixed entropy generation 
across the shock wave. 

In order to solve this apparent paradox, one realizes that there must be some real 
physical mechanism in the flow to produce the dissipation which the equations 
predict and that no real discontinuities can exist. In  fact across such high gradients 
of velocity and temperature, viscosity and thermal conductivity, however small they 
might be, come into play and give rise to a transition layer of finite thickness over 
which the changes in flow properties take place. It is possible to analyse the flow 
structure within this transition layer by using the Navier-Stokes equations. 
However, it has been argued that the thickness of the transition zone is comparable 
to the mean free path and hence continuum fluid mechanics should not be applied 
there. Suggestions have been made rather to apply directly the Boltzmann equation 
from kinetic theory. Despite the difficulties, NavierStokes analysis should give a 
qualitatively correct physical picture (Courant & Freidrichs 1948) in which we are 
interested here. The four laws then reduce to 

continuity (PV) ,  = 0, 

momentum (P+pv"-pUv,), = 0, 

entropy p V T 5 ,  = puvz,+ (AT,),, 

energy [pV(h + tv") -pVV, - AT,., = 0, 

where the subscript x refers to differentiation with respect to x. 
Obviously (A 7)-(A 9) can be integrated across the shock, the far upstream and 

downstream conditions being such that the derivatives of all flow variables are 
vanishingly small. Otherwise one may consider what happens in the limit p+O, 
A - t O  and then let the point 1 approach 2. Such integrations would reproduce 
equations (A 4)-(A 6) which were also obtained by integrating Euler's equations. 
However, integration of the entropy equation (A 10) gives 

p 1  V,(s,-s,) = l p $ d x + l A g d x + E r .  1 (A 11) 

Although the last term on the right-hand side of (A 11) tends to zero, the other two 
terms involve integrals over an interval within which P, and v2, become very large 
in the limiting process. They always make a positive contribution and are responsible 
for the increase in entropy. Thus, although the differential form of the conservation 
equations, (A 1)-(A 3), represent an isentropic process, the integral forms, 
(A 4)-(A 6), are valid across a normal shock wave. 

Similarly, for a vapour-droplet mixture, the normal shock conditions, (5)-( 7), may 



368 A .  Guha 

be thought of as being derived by integrating differential equations of motion which 
are valid for an inviscid, equilibrium two-phase mixture (hence isentropic). On the 
other hand, one could write a general set of equations for a vapour-droplet mixture 
that would be valid inside the relaxation zone of a shock wave (Guha & Young 1989) : 

continuity dbg'V,+Yl(l-Y)PgV,l= 0, (A 12) 

momentum d b + P g ~ + Y l ( ~ - Y ) P g V 3  = 0, (A 13) 

energy d b , ~ ' , ( h g + S I " , ) + Y / ( l - Y ) P , ~ ( h , + ~ ~ ) l  = 0, (A 14) 

where the subscript 1 represents liquid phase. In order to close the system of 
equations, the above three equations are supplemented by the equation of state of 
the vapour phase and three equations characterizing the interphase transfer of mass, 
momentum and energy. If (A 12)-(A 14) are integrated between state points 1 and 
2, where the vapour droplet mixture is in inertial and thermodynamic equilibrium, 
(5)-(7) are regained. It should be noted that the integration could be performed 
without any direct reference to the interphase transfer processes. Thus explicit 
inclusion of the non-equilibrium, relaxation processes in the differential equations 
has no effect on the integral conservation equations. However, the mixture is not at 
equilibrium inside the relaxation zone. Hence, entropy is created continuously 
because of the drag originated from velocity slip and the irreversible heat and mass 
transfer because of phase change. 

The general form of the equation for the production of entropy in the relaxation 
zone can be deduced from (A 12)-(A 14) but is complicated. The qualitative feeling 
can, however, be obtained by assuming that the relaxation takes place in two distinct 
stages (Young & Guha 1991). In  the first stage inertial equilibration takes place with 
frozen heat transfer and in the second stage the temperature equalization takes 
place. It can be shown that the entropy increase for the first process is given by 

and that due to the second stage is 

where AV = V, - V, and AT = T, - Tg are the velocity slip and the vapour subcooling 
respectively. T~ and +rT are the inertial and thermal relaxation times as defined in 
Guha & Young (1989). Inside the relaxation zone of a shock wave the vapour is 
superheated and AT is negative. 

Both equations (A 15) and (A 16) show that the change in entropy is proportional 
to the square of the non-equilibrium variables and hence entropy always increases in 
an infinitesimal change due to relaxation process. When equations (A 15) and (A 16) 
are integrated across the relaxation zone and then added together, this accounts for 
the contribution of the relaxation processes in the overall rise in entropy as predicted 
by the generalized Rankine-Hugoniot relations (entropy increases across the frozen 
shock in a partly dispersed wave because of viscous dissipation and thermal 
conduction). 
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